نویسندگان :
شیوا شکوهمند ( دانشگاه خواجه نصیرالدین طوسی ) , کمال محامدپور ( دانشگاه خواجه نصیرالدین طوسی )
چکیده
Abstract— With rapid developments in artificial intelligence applications the need for better human-machine interaction is more tangible and subjects such as emotion recognition have become controversial research areas. In this paper we develop a speech emotion recognition model by introducing novel features which results in higher accuracies yet less computational complexities compared to the literature. The evaluation of the proposed framework is carried out using three classifiers including support vector machine (SVM) with linear kernel radial basis function (RBF) SVM and extreme gradient boosting (XGBoost). The best performance is reported for linear-kernel SVM with accuracies of 86.28% and 100% on RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song) and TESS (Toronto emotional speech set) datasets respectively. Furthermore the performance achieved is compared with that of neural network-based methods. It is demonstrated that our results are highly comparable with the literature although the method holds lower complexity.
کليدواژه ها
Emotion recognition SVM XGBoost RAVDESS TESS
نحوه استناد به مقاله
در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
شیوا شکوهمند , 1400 , تشخیص احساسات گفتاری بر اساس تغییر فضای ویژگی , پنجمین کنفرانس مهندسی مخابرات ایران